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The Equations of Ostwald Ripening for Dilute Systems
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We consider a dilute mixture in 3D of a finite number of particles initially close
to spherical, but of varying sizes, and representing one of the phases evolving
according to the quasistatic dynamics. Under the scaling hypotheses that (1)
typical size/typical distance and (2) deviation from sphericity/typical size are
small, we associate centers and radii to each particle for the whole evolution and
derive rigorously a set of ODEs fo the radii which we relate to the Lifschitz—
Slyosov—Wagner theory of coarsening.

KEY WORDS: Quasi-static Stefan; Ostwald ripening; Mullins—Sekerka;
stability of spherical shape.

1. INTRODUCTION

We consider a system of two phases and evolving by diffusion. The canonical
example is a uniform mixture of a binary alloy quenched at a temperature
between the liquidus and the solidus lines. At first there is separation in
two phases. This can occur via two distinct mechanisms known as spinodal
decomposition and nucleation. During these stages a large number of small
particles representing one of the phases is generated.

In this work we are not concerned with these initial stages, but rather
with a later stage, called Ostwald ripening. Alternatively this stage is known
as coarsening or aging. This stage is characterized by a decrease of the
interfacial area. Accordingly there is a reduction of particles and the large
particles grow at the expense of the smaller ones.’) The driving force of
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Fig. 1. Particles representing the © phase swimming in the @ phase.

this process is the Gibbs—Thomson condition which states that the chemi-
cal potential on the interface is proportional to its mean curvature.

In this paper we consider an initially dilute mixture of a finite number
of particles in three space dimensions (Fig. 1). These particles do not interact
directly, and in particular they are too far to collide. However, they exchange
mass with their surroundings in such a way so that the volume of each phase
is preserved and at the same time the total surface area of the interface
between the two phases is decreasing. Three is physically the appropriate
dimension. We do expect some differences in two dimensions (cf. Zhu ez al.®*).

We take the particles initially close to spherical but of varying size.
Under the scaling hypotheses

distance between typical particles 0 <1>

size of typical particle e

size of typical particle 0 <1>

deviation from sphericity - g

0<e<< 1, we show that we can associate to each particle a center (),
a radius p,(¢), and a function r,(u, t), defined over the unit sphere that is
measuring the deviation from sphericity of the ith particle. We then estab-
lish rigorously the O.D.E.’s?

3 These equations were brought to our attention by P. Bates and P. Fife in 1992.
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and the global in time estimates

(2)

We also establish that during the whole evolution, the particles stay
approximately spherical, and their radii satisfy, to principal order in e,
Eqgs. (1). The decoupling (to principal order) of Egs. (1) from the equations
of the centers is mainly due to the fact that the motion of the centers is
slower by an order of magnitude.

In this work we do not derive explicit equations for the centers &;.*
Such a task would amount to determining higher order terms in the
asymptotic expansion of the solution. We expect the & equations to be
strongly coupled with Egs. (1) (cf. example (4.5) in Zhu et al.®¥).

Equations (1) predict that at any given time the radius of a given par-
ticle decreases or increases depending on whether its size is below or above
the average radius p. The smallest particle always shrinks, while the largest
always expands. Particles keep disappearing until finally we are left with a
single one. We validate the equations all the way to the end.

The equilibrium states of Eqs. (1) are equal sphere configurations,
prL=pr= - =p,. As we show in ref. 20 they correspond to unstable equi-
librium configurations of the original evolution system. Equations (1)
happen to respect the initial order of sizes, p; <p, < --- <p,.

Most importantly Egs. (1) preserve the total volume of each phase and
reduce the total perimeter,

d n
E Z pl _0
i=1
- (3)
— <0
gL

in accordance with the diffusion law they are derived from.

The first who analyzed succesfully in a quantitative way the time
asymptotic behavior of the particle size distribution in three dimensions
were Lifschitz and Slyosov, in a celebrated paper® in 1961, and indepen-
dently Wagner.""® The analysis in these works is based on assumptions and
approximations that are reasonable for dilute systems with a large number
of particles. Effective equations for the growth of a spherical particle coupled
with an external field representing the effect of the rest of the particles are

4We have done this recently in work in progress where also we obtain the next term in the
p-equations.
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derived. This is done under the explicit hypotheses that the particles
are exact spheres and that their centers stay fixed in time. The results
concern the long time behavior of the particle radius distribution n(R, ) dR
(: =number of particles with radi in [ R, R+ dR]).

Specifically the LSW theory provides the equation

on(R,t) 0 [dR
a1 +8R<d n(R, t)> 0 @)
with
dR 1 1 1
7= 7o) 7 )
(cf. (1)), and where R stands for average size
_ _j Rn(R, t) dR
R(1)= [ n(R, 1) dR (6)

A self-similar solution then is obtained, which is thought to be representing
the typical dynamics of the system for large times. On the basis of this solu-
tion temporal laws for the average size R(¢), the supersaturation 0 (), and
the total number of particles N(¢), are derived,

R(1)=(R*0) 4 ct)'?
0, =(R(0)+ct)~'7 (7)
N(t)=c(R*0) +ct) ™!

Self-similarity amounts to the statement that after normalizing with respect
to R(z), all systems, independependently of the initial configuration,
ultimately behave identically, exhibiting a very special distribution of sizes,
maximized at a special value. For an examination of similarity see the
recent work of Niethammer and Pego.”

Since then the LSW has been subjected to an amount of criticism and
has been modified to account better for experiments. We refer to Penrose
et al.®*3) and especially to Voorhees et al,®”3® for the more recent
developments.

LSW is a mean field theory, and provides the effective Eq. (5). Recently
Niethammer® gave a rigorous derivation of Egs. (4) and (5) utilizing
homogenization techniques under the restrictive hypotheses that the par-
ticles are spherical and the centers are fixed. Working with exact spheres
requires modification of the dynamical law. We hope that the results of the
present paper which dismiss with these hypotheses will also make possible
a more general derivation of Egs. (4) and (5).%®®
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The reader can easily check that Egs. (1) have scale invariance com-
patible with the ¢'/? law, that is if p(¢) = (p,(?),..., p,(t)) is a solution, then
so is A~ '3p(At) for A>0. We notice the related fact that the equation

p= s (8)

that describes approximately the evolution of a particle near its extinction
admits the solution

p(t)=(p(0)—30)'"? 9)

In the present paper we derive Eqs. (1) under the dynamics considered
in the original Lifschitz—Slyosov—Wagner theory:

Au=0 off I
u=H on I’ (10)
0
a—i’:o on 0Q2
0
v=—|%  onr (11)
on

Here I'=J/_, I';, is the union of the boundaries of the » particles, H
is the mean curvature, V' is the normal velocity, and |0u/0n|| is the jump
of the derivative of u in the normal direction to I". Q is a bounded, smooth
domain in R°.

35

Fig. 2. A schematic representation of the potential u generated by two unequal spherical
particles of radii r,, r,. The height represents the (mean) curvature of each particle. The har-
monic extension in the interior of each sphere is constant.
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Equation (11) is the sharp interface limit of the celebrated Cahn-—
Hilliard equation (refs. 8 and 9, Pego,'® Alikakos, Bates, and Chen").
In this physical context u stands for the chemical potential and u = H is the
Gibbs—Thomson relation.

Equation (11) is the quasistatic approximation of the two-phase Stefan
problem with surface tension where the diffusivity is taken infinite and so
the diffusion equation has been replaced by Laplace’s equation. In the
solidification context (10), (11) is known as the Mullins—Sekerka equation,
and first appeared in ref 12. The quasistatic approximation in the
solidification context is reasonable if the sensible heat is negligible in rela-
tion to the latent heat (Alexiades and Solomon('®)). Naturally this model
overestimates the motion of the interface.

Equations (10) and (11) define a volume preserving, perimeter shorten-
ing law. This follows from the following formal calculations: Let Per(/()),
Vol(27~(¢)) stand for the perimeter and enclosed volume respectively. Then
by calculus

d _ _ auint auext _ 2
w7 Per(I'(1))=2 LHV— —2Lu< 3 o >— -2 fg |Vu|

d 0 0 (12)
— Uint Uext _
Gvol@- =] v (G T

where u;,, U stand for interior and exterior harmonic extensions of H.
These calculations presuppose well-posedness of Eqs. (10) and (11). In this
direction there is the work of Chen et al." on local existence of classical
solutions following earlier work in 2 dimensions by Chen'> (cf. Constan-
tine and Pugh"®). More recently, Escher and Simonett® have introduced
an alternative approach to the local existence theory. Global exsitence of
weak solutions representing the interface through and beyond topological
changes is due to Soner®® and Chen.!®

From Eq. (12) we see that (d/dt) Per(I°(¢)) =0 if and only if u is a con-
stant, and therefore the only equilibria not intersecting the boundary of Q2
are necessarily the union of spheres of equal radii. In the following discus-
sion we focus our attention on the class of solutions not intersecting 0%2,
and of a fixed initial volume |27(0)|, and we take 2 <R3, a bounded,
smooth, open set.

In explaining our main result it is natural to begin by considering the
one particle case. A single sphere is clearly an equilibrium. Reflecting for a
moment one can see that there is a 3-parameter family of such equilibria
(and hence each one of them has a 3-dimensional center manifold).
Chen™® (and Constantine and Pugh® for a related problem) showed that
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such equilibria are stable. Escher and Simonett!!”) extended and refined
these local stability results.

The situation is drastically different when we switch to more than one
particle. To begin with, a two-sphere equilibrium has an 1-dimensional
unstable manifold corresponding to the shrinking/expanding motion pre-
serving the total volume, and a 6-dimensional center manifold corresponding
to the 3 plus 3 independent translations of each sphere. We refer the reader
to Alikakos and Fusco,®’ for precise general statements. A configuration of
two, unequal, spheres is not an equilibrium configuration and generally it
is far from it.

What however poses as the greatest difficulty in justifying rigorously
Egs. (1) is the fact that the radial class, for two or more particles, is not
preserved under Egs. (10), (11), as such an initial condition is immediately
distorted.

The present problem under the stability hypotheses above can still be
viewed as a perturbation problem. The perturbation parameter is &; it
measures simultaneously size to distance, and distortion to size (Fig. 3).
The reference problem for studying any given particle is a nonequilibrium
problem, on R”, a spherical particle coupled with an isotropic external field
representing the effect of the remaining particles, and corresponds to the
effective Eq. (5).

We now present some of the ideas along with some notation preparing
the ground for the main result.

Fig. 3. The Distortion Factor. In Fig. 3a we present an electrostatic analogy suggesting the
distortion away from the spherical shape of two, slightly unequal spheres. If the spheres are
equal, no charge is needed to generate the constant potential. In Fig. 3b we quantify the
distortion. The point charge at the origin represents the anisotropic effect of the external field
generated by the remaining particles. The distortion is proportional to (1/r)—(1/(p+7))
(p/(r(r 4+ p))) = O(&?) (according to our scaling assumptions). It can be detected at the hnedr
level by studying the principal eigenfunction of the linearized operator.
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o Our strategy is to focus attention on one particle at a time, and
reduce the problem to a single particle plus an external field representing
the effect of the rest of the particles.

e Equations (10), (11) is an evolution equation, somewhat in disguise.
For advancing I" one first computes H, and then apply to it a Dirichlet—
Neumann type of operator, which roughly amounts to one more derivative,
and so three® derivatives in all, that gives V, the normal velocity. Thus
the underlying operator is a 3rd order, pseudodifferential operator. The
linearization of this operator about a general Iy has the form

A=TL (13)

where 7 is a Dirichlet-Neumann type operator, and L is the classical
Jacobi operator on the sphere,

2
L=AS/2,~|—PI (14)

where 4, is the Laplace-Beltrami operator on S f).

e The spectrum of A4, in the class of conservative perturbations plays
a significant role. Notice that in this case L becomes a shift of the
Laplace—Beltrami on the sphere and so the spherical harmonics are easily
utilized.

o The definition of a co-ordinate system and in particular of a center
is an important ingredient. Given a particle, close to spherical, we associate
to it in a unique manner a sphere, and view the particle as a small pertur-
bation of that sphere. In particular if the interface is already spherical, the
procedure associates the same sphere. Thus to each such interface we give
a center and a radius. The key fact about the co-ordinate system that
singles it out comes from the way we intend to utilize it, which is for
studying the global stability properties of the spherical shape. Given a
sufficiently smooth I” close to the sphere S%(¢; p), we prove that there are
unique £ eR3, peRY, r(-)e C*T%S?) such that

I'={x|x=¢+p[1+r(u)]u,ueS*0;1)} (15)

5 This explains to some extent the structure of Eqgs. (10) and (12). Notice that the motion by
mean curvature corresponds to g = — 1/p, while Eqgs. (10) and (12), relate to p = — 1/p?, the
derivative of the curvature. This also explains the ¢/3 scaling law (see Eq. (9)).
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Fig. 4. The spectrum of 4 on S,: A, =7, =2;=0is a triple eigenvalue, with 7, > C/p>. The
zero eigenfunctions which correspond to the three independent translations are given by the
spherical harmonics of degree one, 17,=(u, ¢;), lu| =1, j=1,2,3 where (, ) is the Euclidean
inner product, #, =cos a sin 6, 77, =sin a sin 6, 73 =cos 6.

with

[ rwdotwy=0
SH& D) (16)

[ rwmdewy=0, =123
SH& 1)

where 7, are the eigenfunctions of 4 corresponding to the zero eigenvalue
and coincide with the spherical harmonics of degree one, as discussed in
Fig. 4. Notice that Eq. (16) consists of four constraints matching exactly
the four parameters & =(&,, &,, &;), p. Notice also how p is factored out in
Eq. (15) so as to be appropriate near the extinction of the particle.

A similar co-ordinate system was introduced in Alikakos et al.** for
two dimensions and in Bellettini and Fusco®® for three dimensions.
Independently a similar notion of center has been employed by Huisken
and Yau® and especially in the related work of Ye’s.*>

We will describe the evolution of initial interfaces of the form 77;(0),
where (Fig. 5)

L(t):=Et)+p,(0)[1+er(ut)]u, ueS?, i=1,.,n (17)

Our intention is to decompose the motion into a motion for the cen-
ters &,(¢), for the radii p;(¢) and for the distortions r;(u, t). The co-ordinate
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Fig. 5. The co-ordinate system.

system we introduced provides a decomposition of the linearized problem
into the normal modes &, p and r. It turns out that it decomposes the non-
linear motion as well, globally in time.

2. THE MAIN RESULT. STATEMENT AND SKETCH OF PROOF

Theorem. Let 2=, have diameter O(1/¢). Let the initial n-par-
ticle system be given by 77;(0) as in Eq. (17), with

(18)

, i=1,.,n

C some fixed, positive constant. Then Egs. (10) and (11), for ¢<g, is
equivalent to a system of evolution equations for p,, &; and r, satisfying

. 1 1)1
(1) o
P Pi/Pi

&i=0() (19)

H"[Hc»‘ﬂ(gl’)=0(1), i=1,.,n=2



The Equations of Ostwald Ripening for Dilute Systems 861

where p,(t) > 0 as t > T and the estimates hold uniformly for r€[0, T],
T the time of extinction of the smallest particle for which the following
estimate holds:

n((3/4m) Vol(0))'/?
max; p;(0) —min; p;(0)

(min p,(0))? (20)

W | =

(min p;(0))*<T<
j

W | =

Vol(0 fn Z ;0 (21)

j=1

Remarks. 1. The statement of the theorem above could be
improved in two ways. First the optimal estimate for the distortion is O(&?)
and therefore we expect

Ir;ll = O(e)

This improved estimate would imply that the £ equations are independent
or r, to principal order, and hence that the system for p, £ and r would
have triangular structure. Second the lim,_, r7,(¢, u) =0 would establish
that the particle shrinks like a sphere.

2. Globalizing the solution by removing and continuing is not always
legitimate. In our situation it can be done due to the results in Chen.'®
We refer the reader to ref. 5.

In the following we present a sketch of the argument indicating briefly
the analytical difficulties and referring to Alikakos and Fusco® for details.

Sketch of the Proof.

Step 1. The Potential theoretic Reduction on the Interface. The
evolution system (10, 12) can be reformulated as a problem that lives
entirely on I". This reduction, in principle, is known for Stefan probems
(see also Chen et al.®®). For the problem at hand

fg(x,y)Vy dy — IFIJJ (x, y) V(p) dy dx

r

=H(x)—H, xel (22)
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where g(x, y) is the Green’s function

1

A4 =0 -
86 ) =000~ 1o
0
9% _0  onoQ (23)
on,

_ 1
= J H(y)dy, |I"| :=surface area of I”
|\l Jr

Notice that g is independent of I"= I"(¢).
Equation (22) can be written abstractly in the form

S(V)=H—H (24)

where S is the linear operator defined by the left hand side of Eq. (22).°
S is invertible in the class of functions with zero average

V=S"\(H-H). (25)

Step 2. The Reduction To a single Particle plus a Field. Pick i
and fix it and consider x € I';. Utilizing Eq. (18) and the estimate

C
lg(x, )| <
|x— |
we obtain
| gt Vi) dy=V+H(x)—H-Y f Vi(y)dy
1"[ J#I i
—V+H,(x)—H+0(), xel; (26)
where
Vi: V|r.
_ 27)
V-=m L L g(x, y) V(y)dy dx

¢ Compare with the simpler, second order evolution law V= H — H.®%? Notice that for this
the pattern of exact spheres is invariant.
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Estimate (26) is needed in an appropriate C***(I",) norm uniformly in
time. It is based on a (hard) estimate on r (cf. (29)) below) which we will
revisit later.

Step 3. Replacement of g(x, y) with the Newtonian Potential.
We replace g(x, y) in Eq. (26) with N(x—y)= —(w;/(|]x—y|)). The
estimate is not particularly hard provided Eq. (29) is given. It amounts to
removing the boundary 0Q.

Step 4. Reduction on the Sphere S2(&;p;). Assuming the
estimate

I7ill e3+ary < C (29)

holding up to =T we can replacAe in Eq. (28) I'; with S%(&%, p;) at the
expense of changing slighty V; to V;:

1

[ Ne=») Vidy=P+ Hx)—H+0(e),  xeS%&p)  (30)
S, py)

Step 5. Linearization of the Mean Curvature about the Sphere.
For x e I'; we have the estimate

Hx) — A=t mZPe L &4 o) (31)

pi Xpiops

where L is the Jacobi operator on the sphere S%(&/, p)).

Step 6. The first Approximation. From Eq. (31) we see that
replacing H(x) — H in (30) with its linear approximation will affect V; only
by a small amount. Thus V,— V;= O(¢), where V; is obtained by solving

1

2 _ 1 .
[ N P dy =T —Z L S xes¥Ep) (32)
S2& py) i Pr Pi

The advantage of all this is that we can now calculate ¥, by hand in terms
of spherical harmonics. It amounts to calculating the harmonic extensions
u'(x) of the Dirichlet Data on the right of Eq. (32). Utilizing the special
nature of r; (orthogonality to first four spherical harmonics) plays a role in
this and in the following calculation. We find

5 | 1
Vi(x)=—{{—zé)k} +V}+8 T,Lr, (33)
Pi Pk Pi Pi
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Here T, stands for the Dirichlet-Neumann type operator on the sphere

and with Q replaced by R>.

Step 7. Conclusion. Under the estimate (29), the following
approximations are legitimate

A 1 11
p;~ average of V,~ average of V,= {p—zpfk} + V} (34)
i k

i

where we used that

J  ToLr,=0
Sz(él;Pi)

Finally to calculate V= V(t) we employ the conservation which holds
approximately at the level of p-equations: From

d 3
— =0 35
and
. 1 X pk} —} 1
pi=—{| ——=2\ 17— (36)
{pi > ri Pi
we obtain

Y ol (Up) —H]
2 P

and substituting in Eq. (36) we obtain Egs. (1) and so the main part of the
theorem. ||

V= (37)

COMMENTS

1. In ref 5, for making rigorous many of the estimations above we
use systematically Miranda’s elliptic regularity. The following is a sample
result which we employ throughout:

Let Q be bounded in R”, 0Q2 e C** Consider the interior and exterior
problem

Au=0 in Q, Au=0 in Q°

u=g on 0Q, u=g on 0Q
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Then we have the estimate

{H”HCU(Q)a HuHcl-l(Qt‘)} <Clgllen 0%2)

C independent of g.

All the elliptic theory we need (including the result above) can be
found in Miranda’s paper®” on Newtonian potentials which is a further
development of Agmon, Douglis, Nirenberg.®

2. The estimate on ||r| ¢34 is @ major analytical step. For this purpose
we employ the semigroup formulation of (10), (11), following Escher and
Simonett!”) that utilizes the maximal regularity theory of Da Prato and
Grisvard.®32 In this direction we profited a lot from several discussions
with G. Simonett and from a careful reading of Chen et al.*¥
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